PD-95470

 I_D

44A

International Rectifier

SMPS MOSFET

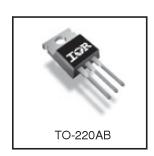
 \overline{V}_{DSS}

200V

IRFB42N20DPbF

R_{DS(on)} max

 0.055Ω


HEXFET® Power MOSFET

Applications

- High frequency DC-DC converters
- Motor Control
- Uninterrutible Power Supplies
- Lead-Free

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	44	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	31	Α
I _{DM}	Pulsed Drain Current ①	180	
P _D @T _A = 25°C	Power Dissipation	2.4	W
P _D @T _C = 25°C	Power Dissipation	330	
	Linear Derating Factor	2.2	W/°C
V_{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt ③	2.5	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torqe, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.45	
R _{0CS}	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
R _{eJA}	Junction-to-Ambient		62	

IRFB42N20DPbF

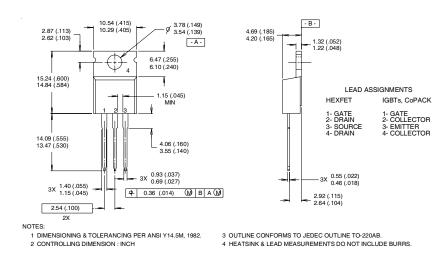
Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	200			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.26		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.055	Ω	V _{GS} = 10V, I _D = 26A ④
V _{GS(th)}	Gate Threshold Voltage	3.0		5.5	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 200V, V_{GS} = 0V$
				250		$V_{DS} = 160V, V_{GS} = 0V, T_{J} = 150$ °C
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 30V
	Gate-to-Source Reverse Leakage			-100	114	V _{GS} = -30V

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
g _{fs}	Forward Transconductance	21			S	V _{DS} = 50V, I _D = 26A
Qg	Total Gate Charge		91	140		I _D = 26A
Q _{gs}	Gate-to-Source Charge	T	24	36	nC	V _{DS} = 160V
Q _{gd}	Gate-to-Drain ("Miller") Charge	T	43	65		$V_{GS} = 10V$,
t _{d(on)}	Turn-On Delay Time		18			V _{DD} = 100V
t _r	Rise Time		69		ns	I _D = 26A
t _{d(off)}	Turn-Off Delay Time		29			$R_G = 1.8\Omega$
t _f	Fall Time	T	32]	V _{GS} = 10V ④
C _{iss}	Input Capacitance		3430			V _{GS} = 0V
Coss	Output Capacitance		530			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance	T	100		pF	f = 1.0MHz
Coss	Output Capacitance	T	5310			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		210			$V_{GS} = 0V$, $V_{DS} = 160V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance		400] [V _{GS} = 0V, V _{DS} = 0V to 160V ⑤

Avalanche Characteristics

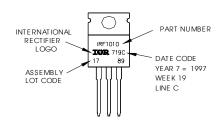

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		510	mJ
I _{AR}	Avalanche Current①		26	Α
E _{AR}	Repetitive Avalanche Energy①		33	mJ

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			44		MOSFET symbol
	(Body Diode)			44	A	showing the
I _{SM}	Pulsed Source Current			180	, ,	integral reverse
	(Body Diode) ①		- '			p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S = 26A, V _{GS} = 0V ⊕
t _{rr}	Reverse Recovery Time		220	330	ns	T _J = 25°C, I _F = 26A
Q _{rr}	Reverse RecoveryCharge		1860	2790	пC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

IRFB42N20DPbF

TO-220AB Package Outline



TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25^{\circ}C$, L = 1.45mH $R_G = 25\Omega$, $I_{AS} = 26A$, $V_{GS} = 10V$
- $\begin{tabular}{l} @ I_{SD} \le 26A, \ di/dt \le 110A/\mu s, \ V_{DD} \le V_{(BR)DSS}, \\ T_{J} \le 175^{\circ}C \end{tabular}$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- $\ \ \, \ \, \ \,$ $\ \ \, \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \$ $\$ $\ \$ $\ \$ $\ \$ $\$ $\ \$ $\$ $\ \$ $\$ $\ \$ $\$ $\ \$ $\$

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

